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AXISY~~ETRI~ PLASTIC FLOW OF AN IDEALLY CONNECTED TEDIUM WITH FRICTION* 

M.SH. SHTEIN 

A new approach is proposed to solving the boundary value problems of a 
flow corresponding to the sides of piecewise-smooth conditions of 
plasticity, based on introducing the function of characteristic directions 
which satisfies a quasilinear second-order hyperbolic equation. Systems 
of equations are studied describing the plastic flow of an ideally rigid- 
plastic medium obeying the generalized Coulomb-Mohr condition. It is 
established that the systemsofequations are hyperbolic, and relations 
on the characteristics are obtained. The possible discontinuities in the 
stresses and displacement velocities along certain curves in the 
meridional plane are studied. Analgoues of the variational principles 
are obtained for the rigid-plastic medium in question. 

1. Yield surface. We adopt 

a (ui f 01) + flak + [ ui - ul ) = 2k (I.11 

i#j#kk; i,j,k=f,2,cp 

as the generalization of the known piecewise smooth yield surfaces in the space of principal 
stresses /l-7/. 

It can be shown that satisfying the inequalities a- 1 <$<a+ ~8 represents the 
sufficient condition for (1.1) to correspond to a convex, six-sided pyramid with apex at the 

9 
point ur = cz = uq = 2kl(2a + p) and the axis equally inclined 
to the axes of the coordinates ai(i = 1,2,cp) in the space of 
principal stresses. Fig.1 shows the intersection of the 
pyramid surface by the plane a~fu,S_e,=& The coefficient a 
should be associated with sincp"(cp" is the angle of internal 
friction); fi is the coefficient of lateral pressure (tension) 
/8/ taking into account the effect of the mean principal stress 
on the strength of the medium (it depends on the porosity and 
compaction), and k is the coefficient of adhesion of the medium. 

In (1.1) let us change to the stress tensor components 
o,, %, $2, ow in r, cp, 2 axes 

A (0, + UJ + Bu, + C T/e = 2k 

z = (q - u$ + 4t,,2 
(1.2) 

Fig.1 where A, B,C are determined depending on the type of sides. 
Following the notation of Fig.1, we have 

d=a, B=&C=l (1.3) 
for the sides QStp+Qlp- (a~ > a, > a& Q~eQ~rp+ (a$> (38 > a$, and 

A = (a + 8 -t-x)/2, B = a - x, C = Ix (a - f3) + 1112 (1.4) 
x=1, u,>uq,; x= -1, ua<u9, 

for the sides Ql,-Qga+ (cr, > u1 > us), QlmgQl~- (at > cr1 > a,). For the sides Qn+Qam (up > us > ad, 
Q~~-QZrp+(u~>a,>u,) we have the relations (1.4) where in the expression for x, we must 
replace us by 0%. 

any of the edges Qra+,Qao-,...,Qlm- (Fig-l) can be described as an intersection of the 
adjacent sides 

A (a, -I- a,) + Bu, 4 C 1/r’= 2k (1.5) 
AI (a, I- a,) + &(I, + %I f/a= 2k 

Here A,As,B,Bs,C,CI are found from (1.31, (1.41 in accordance with the condition of 
contiguity. 
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We note that condition (1.1) generalizes the piecewise-smooth yield surfaces in the space 
of principal stresses, known in the theory of ideal plasticity. Thus, when a=b=O,we 
have the Tresca-Saint Venant plasticity prism /l, 5-7/; a = sin@, O = 0 is the Coulomb-Mohr 
condition /2/; a = $ is the proper Drucker pyramid /3/ and fi = art: 1 are three-sided 
Raythornthwaite pyramids /4/. 

2. The defining equations of flow for a side. Let us introduce the Levi variables 
u = (01 + u&2, z = I q - lJ* l/Z,Y 

f3r = 0 +z Co53 2Y, a,= 13 -xm4 2Y, rrr= zsin2Y (2.1) 

(Y is the angle between the first principal direction in the r,z plane and the r axis, 
(~1, 0% are the principal stress components in the meridional plane). Using further (1.2) as 
the plastic potential, we obtain the following expressions for the deformation velocities 

a,, sz, s,, yrc: 

sr = W0Jr = h (A f C cos 2Y), e, = aura2 = h(d - C COS~Y) (2.2) 

ew = ulr = hB, yrz = 2hC sin 2Y 

Here u, v are the velocities of displacement along the r, z axes respectively, and h 
is a non-negative multiplier. 

Further, if we eliminate h from (2.2) and a, from the equations of equilibrium using 
(1.2) in the latter process , and use thevariables (2.11, we obtain a quasilinear system of 
five equations for determining the unknown functions a,~, Y, U, u, in the form 

ao cos2Y -27’ -$+sin2Y$- 

22 sin2Y-$-- 
i 

0oszY+$ 

$fsin2Y+-- cos2++- 

We should consider, together with relations (2.4), the conditions of associability of 
the principal velocities of deformation with the principal stresses , and this leads to the 
need for the following functional and differential inequalities to hold: 

(2.5) 

for the sides Qls+Q1*-, Qta-QzO+ and of the inequality of oppostie sign forthe sides Qw-Qw’r 
QS(P+Q~PI-, QI~-Q~~+ ana Qac+Qlq-. 

The system (2.31, (2.4) which follows directly from the associated flow of law with 
condition (1.21, is not subject to classification /9/. The characteristic determinant of 
(2.3), (2.4) is identically equal to zero, since the matrices accompanying the derivatives in 
r and z of the functions required, are degenerate. Therefore, we can assume that separate 
differential relations exist, which follow from (2.21, for U,V and their derivatives and 
for the function Pt and its derivatives, The relation between the velocities LL, u is 
established by eliminating eos2y,sin 2y from (2.4), and this leads to the following non-linear 
hyperbolic system: 

with characteristics 

d&Y = tg Y, &I& = - C&UT (2.7) 

Relations (2.7) determine, in the r, z plane, the principal directions of the stress 
tensor (they are coaxial with, and therefore also represent the principal trajectories of the 
deformation rate tensor). The corresponding corollaries of system (2.6) for the Coulomb-Mohr 
condition (a =sin$, B = 0), and the Tresca-Saintvenantcondition (a = fi = 0) were derived in 
12, 6/. However, the formulation of the boundary value problems for system (2.6) presupposes 
kinematic definiteness, and this cannot be realized in the course of solving specific examples 
of axisymmetric problems in the rigid-plastic formulation. It is therefore important to 
establish the relationship for the function 'P(r, z) and its derivatives. 
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Let us turn our attention to relations (2.2), which yield 

(2.8) 

Therefore we can write 

u==@(r,z)?*, v=tb si ~-+ez+g(r), I+- cw 
CD (r, 2) = f (2) exp ( s f -E!+p) (2.10) 

where f(z), g(r) are arbitrary functions of their arguments from cl. 
If we now substitute the explicit expressions for the velocities of displacement (2.8) 

into the second equation of (2.1) and carry out a series of consecutive transformations, we 
obtain the following equation for the function (2.10): 

Note that (2.10) yields 

(2.12) 

Using the standard procedure for investigating second-order equations /lo/, we find that 
the quasilinear Eqs.tZ.11) is hyperbolic and its characterigtics are the principal directions 
of the stress tensor in the r,z plane (2.7). We shall call (2.10), in accordance with (2.12), 
the function of characteristic directions. g 

Thus the degenerate system of Eqs.(2.3), (2.4) is transformed identically to: Eq.(Z.llf 
for determining the function @(r,z) and hence y (r-,2); system (2.3) linear with respect to 
the functions G,T, and system (2.5) non-linear with respect to the function U,D (the 
latter can be linearized trivially when the function y is known, or when relations (2.9) are 
used to determine the displacement rates). 

Let us further introduce, in the r,z plane, a curvilinear orthogonal system of co- 
ordinates coupled to the principal directions of the stress tensor (2.9) 7 = r (a,@, z=z(a,~) 
(not to be confused with the constants a, 6 of the medium in Sect.1). 

Also let the first equation of (2.7) define the CL line (6 = const) and the second 
equation the @ line (a = eonst). In this case the differentiation operators along the a-, B- 
lines will take the form 

-g-=+-+“tgY-&, -&=+“tgY-$- 
a 8 

Changing in (2.3), (2.4) to differentiation along the characteristics we obtain, in 
accordance with (2.131, 

(2.14) 

(2.15) 

UcosY-V&Y A-C 

(u, V are the rates of displacement along the characteristics (2.7), respectively), We must 
supplement relations (2.15) along the trajectories of maximum elongation with the condition 
that the rate of shear is equal to zero 

where I&.,& are the radii of curvature of the a-and p-lines. 
All this implies that the constructive algorithm for solving axisymmetric problems for 

a rigid-plastic body following the sidesofthe piecewise smooth condition (1.1) can be reduced, 
essentially, to solving the boundary value problems for Eq.(2.11), after which systems (2.14) 
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and (2.15) can be regarded as relations along the characteristics of the stressed and deformed 
state, and determine the .components of the stress and displacement rate tensors. 

3. Formulating the boundary value problems for Eq.(2.11). Let US consider 
the possibility of formulating a boundary value problem for the equation in terms of the 
function @ of characteristic stresses, starting by defining , on a certain curve in the ?,I: 
plane (Fig.2) the stresses, displacement rates, and their combinations. We shall assume that 
the curve ab is given in parametric form: r= r(t)- z = a (0; TV (a fl, and r(t), z(f) ss C$,,tl]$ and we 

shall denote the values of the functions on a5 by the superscript '. Let us consider, without 
loss of generality, the following three cases of formulating the problems which reduce to 
Cauchy problem for (2.11). 

lo. The components of the stress tensor are specified on the arc ab 

% 101 = %'V a, iab = ‘ho, %a lab = *,,s” 

Then (a prime denotes a derivative in t) 

P0 = q f I/* arctg 2T,*"/(Uff - a,",; tg n = -f+ (t)/z' (t) 

We obtain at1.b from (2.10) as 

Then from (2.10) and the derivative with respect to t of (3.3) we obtain 

acr, 
7 ab I 

2'. The displacement rate components are specified on ab 

u 1.6 = uo, v jot, = v” 

Using Eqs.(2.2) we differentiate u",v" along ab to obtain 

X (VO‘ 00s q - uJ’ sin t)) (2.6) 

Therefore the function @ and its first derivatives on ab are 

Fig.2 
given by the relations 

3'. The following mixed conditions are specified on ab: 

o;, 1.b = @,,*. %,s fob = %a’> @,b = u* 

From (2.9) and differentiation of u" along ob we obtain 

the 

(3.1) 

(3.2) 

(3.31 

(3.4) 

(3.5) 

and hence the values of the function (D and its derivatives 

(3.7) 

(3.8) 

(3.9) 

along the arc ob in the form 

(3.10) 

The values of the functions f and its derivative in expressions (3.4) and (3.10) are 
determined in terms of the stresses (3.1) and (3.8). Moreover, the right-hand sides of Eqs. 
(3.6) and (3.9) must not exceed unity in their absolute values, and this imposes restrictions, 
in the form of inequalities, on the velocities u",I.+ and their first derivatives. In the 
case when the arc ab has characteristic directions (Y*=n). we obtain from (3.21, (3.6) and 
(3.9) relations for the initial conditions along the characteristics. 

Thus, using relations (3.3), (3.4), (3.7) and (3.10), we arrive at the Cauchy problem for 
Eq.(Z.ll). The theorems of uniqueness and existence of solutions of this problem for a quasi- 
linear second-order equation were given in /lo/. 

4. Defining equations for an edge. Following Fig-l, we shall consider the edges 

Qlm+P QIPP-* Qsm+ and Q,,:, which have the corresponding relations (1.5) in the space of stresses 
ert ei, a*, B* Using (1.5) as the plastic potential, we will have 

~=4+6cos2W,e,=~-~50s2Y,e,=hB+~tB, (4.0 
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yrr = 2!i sin 2% E, = hA + pA1, 5 = AC + PC,, a, p > o 

A, At,B,B,,C,C, are found from 11.3) and (1.4) as the coefficients of the adjacent edges (E'ig.1). 
Changing in the equations of equilibrium and in (1.5) to the variables (2.1) and to the 

displacement rates in (4.11, we arrive at a quasilinear system of four equations for the 
functions cr,Y, U, u: 

(cosZY-sin x)$-+(CosZY+ sin 2) &-ccos2Y{(1-%ssinX)+ (4.3) 

(~+~)cosZ*-(~-_)sinZY-;-0 

Here 

d= cos 2Y sin x, g = sin 2Wsin x, T = K - (r sin x 
sin a = (2u i_ p)/ (2 - x9), K = 2A/ (2 - $J) 

Eqs.(4.3) must be supplemented by the inequality 

which is obtained by considering the signs of the principal deformation rates referred to the 
corresponding apices. In the case of the edges Qr/,Q,e- we must, in addition to (4.4), also 
have u>O. The edges Ql$,Qtl- (Fig.1) lead to the trivial state 

2k c zk, a,=az=y&-+** zr,=% Q=-+ 
W 

A+* ,(l+Af 

C,=const, A= a+p--x k k,=-, x= 
i 

- 1, Q;% 

a+x' a+% 1, Q:, 

We have the following hyperbolic system for the velocities: 

~+~-~=o,~++ 

with the characteristics r = const, I= const and inequalities 

(4.5) 

(-w 

Let us consider system .(4.2) and (4.3). The system implies that we can consider, generally 
speaking, two equations of (4.2) independently of the last two equations of (4.3) (a statically 
determinate problem). However, in order to construct the matching stress and velocity fields 
while solving the specific problems, we must consider systems (4.2) and (4.3) simultaneously. 
Therefore henceforth we shall consider Eqs.(4.2) and (4.3) as a single quasilinear system in 
the functions o,Y,~,v. The characteristic analysis shows that (4.2) and (4.3) is a hyperbolic 
system with double characteristics 

dzjdr = tg ya’@, y” = Y - w’2 - n/4, y* = Y + iy,‘Z $ n/k (4.7) 

a corresponds to the @-line and fi to the B-line. 
Thus the characteristics of the stress field are identical to the characteristics of the 

velocity field. 
Let us now define the differentiation along the characteristics 

fi@/dp= &f@r+ tg p&ala, { 
Then the relations along (4.7) can be written thus (the upper index refers to the a--line 

and the lower to the p-line): 

(4.9) 

(4.9) 

Here U, V are the rates of displacement along the a- and b-lines, respectively, (a-, & 
characteristics are not orthogonal: yB--yy”= X+X/~). 
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5. Stress and displacement rate discontinuities, Let US investigate the 
possibility that a strong discontinuity in the stress and displacement rates exists in the 
neighbourhood of some curve r in the r,zplane.Letthestress statenear I'(Fig.3) correspond 
to a side ofthecondition 11.1) and let relations (1.2)-(1.4) hold. We shall introduce the 

local system of coordinates (n,~), associated with r as shown in 
Fig.3. Then the conditions of equilibrium of the element of the 
medium in the immediate neighbourhood of the proposed stress dis- 

T 
continuity curve 7 will require that the stress jumps [qJ= Iz,,I= 
0. Here ET, and a,may be themselves discontinuous. 

Let us write the components of the stress tensor in the n,s 
axes 

0, = is + z co9 2 (Y - q), (5.1) 
Cl, = u -z co3 2(Y -q) 
%I8 = z sin 2 (Y - n) 

The condition of plasticity (1.1) can be written in accordance 
Fig.3 with (2.1), in the form 

a, = 2B-' (k - Au - CT) (5.2) 
Using the relations [u,J = fz,,J=O we obtain an equation connecting the jumps Y, a, and 

z across l? 

Thus, knowing the values of Y,T on one side of I' and being given the jump in the 
value of the peripheral stress [u,J, we can find Y+ and hence P, c+ on the other side of I'. 

If we assume that aV remains continuous during the passage across r ([u,J = O), then (5.3) 
simplifies and the jump [YJ will be independent of r and hence also of u. The same result 
is obtained when (5.2) is studied on both sides of I'. 

Now let J? be a part of the characteristic, i.e. n =Y on a segment of finite length. 
Now (5.3) loses its meaning. Let us turn our attention to the relations on the characteristics 
(2.14)-(2.16). This shows at once that [YJ= 0, ol(Ja~]= 0) can be discontinuous along the 
first principal direction (a-line) and US (Ju~J=O) along the second direction @-line). We 
have the following relations for the jumps: 

[all = -B (A + C)-* [u,J ( along the a-line) 

[c,J = BfC - A)-~[u,J f along the B-line) 
(5.4) 

Next we consider the possibility of the jumps in the displacement rates near the curve 
r in the r,z plane, using relations (2.2) in which I‘ and s are replaced by n and s. This 
is based on the fact that (2.2) is invariant under the choice of the rectangular system of 
coordinates in the r,z plane, from which we have 

e --e u= 0 (e, -t- en) 2w %a 
=n - %I A[Zk-A((a,+o,)--Bj,] - Tan -1/L; h,O (5.5) 

Imposing on (5.5) the condition that the tangential velocity component is discontinuous 
along P (anr/e, - ens/e, + oo), we arrive at the equations 

06 - u,, = 0, A (o, + cr,J f Bu, = 2k (5.6) 

Therefore will find from the condition of plasticity (5.2) that a1 = a,, and we arrive 
either at the edges f&+ or &- of the yield pyramid (4.5), (4.6). 

It remains to consider the case when r contains the characteristic directions. From 
the relations along the characteristics (2.15) it follows that the tangential component of the 
displacement rate U may have a discontinuity across the a,-line. The component V is dis- 
continuous along the p-line. But, since the characteristics (2.7) are the trajectories of 
the principal directions of the deformation rates, the condition that the principal shear 
(2.16) be zero must hold along them. This imposes a constraint on the jumps in the velocity 
along the a- and p-lines. 

Indeed, let there be a jump in the value of the tangential component [UJ#O along the 
*-line. Then from (2.15) it follows necessarily that (VJ+O and the radii of curvature 
& and & must be equal to each other (R, = fl,), and the jumps in the displacement rate 
components must satisfy the relations 

[CJ- -fvJ, or U+ + V+ = u--+- V- '(5.7) 

Thus in the case of axial symmetry , when the deformation rates (2.2) correspond to the 
sides, the displacement rate may become discontinuous only along the characteristics (5.7) 



and both the normal and tangenti component of (5.7) willbediscontinuous. Therefore the 
region of the medium with condil--'of plasticity (1.2) adjacent to the curve of discontinuity 
of the displacement rate component r should be regarded as a mathematical idealization of a 
transition layer of finite thickness. Thus, if l' is a segment of a rigid-plastic boundary, 
thentheintroduction of such a layer can be justified bythedilatationeffect (the change in 
volume related to the shear deformation intensity). 

When a,@=$= 0 simultaneously, we obtain the following linear relation from (2.2): 

(5.8) 

Here the passage from the non-deformed part of the medium to the medium with (5.8), is 
made across a layer of finite thickness with the discontinuity properties described above. 

Let us now investigate the stressed and deformed state corresponding to the edges of the 
yield condition (1.5). Let a strong discontinuity exist in the tensor components near the 
curve I' (Pig.31 and [u,l= [tnsJ = 0, Ja,J#O. we should supplement relations (5.1) with the 
equations 

Aa+&=2k, u,=o+m (5.9) 
and this yields, after transforming (5.3), 

cog(Y* - Y-) = A-‘C cos (Y’+ - Y- - 2q) (5.10) 

Specifying on I' the jump IYJ and the values of Q and T onone sideofthe discontinuity 
curve, we can determine, using (5.101, JzJ and JaJ. From the relations for the stresses 
(4.8) along the characteristics it follows that lo]== [Y? = 0 during passage through the 
characteristic. Then by virtue of (5.9) we also have ITJ = JseJ= 0. Therefore, when the state 
of stress corresponds to the edges (1.51, the stress tensor components are continuous along 
the characteristics (4.7). 

Let us now pause and consier the discontinuities in the displacement rate components 
along the characteristics (4.7). We find from (4.9) that !UJ#O across the a-line, and 
for the p-line we have J%'J#O. 

To be specific, we shall consider the a-line and assume that near this line u is 
directed along the tangent, i.e. it coincides with V and V = 0 (‘P .- nib - ~12 = 0 + Y = d4 -!- 
Xf2). Then II = u, v = u tg x. This implies that in the case ofamediumwith frictioncorrespond- 
ing to the edge of the generalized condition (1.11, the jump in the tangential component of 
the velocity leads also to a jump inthevalue of the normal component, and [vj = [u]tg~. Thus, 
in this case, when the velocities are discontinuous along the characteristics, we ought to 
assume that a transition layer of finite thickness exists in the neighbourhood of such a 
characteristic. If x =0 (ac = J3 =O), we have an edge of the Tresca plasticity prism, the 
normal component of the displacement rate has no discontinuity and the necessity no longer 
applies in the transition layer (it becomes a line). 

We note that the special feature of occurrence of a simultaneous discontinuity in the 
normal and tangential component of the displacement rate for the media with yield condition 
depending on the mean pressure, was pointed out in /ll/. Finally, carrying out the general 
argument as in /12/, we conclude thattheline separating the rigid region from the adjacent 
plasticity deformable region represents a characteristic for both the side as wll as the edge 
of condition 11.1). 

6. Dissipation function. Variational approach. Let us determine the function of 
mechanical energy dissipation per unit volume of the medium deformed according to the law 
(2.2). We shall use the repesentation of the stress and deformation rate tensors for the 
axisymmetric case 
the definition of 

in the form of five-dimensional vectors 8,a. Then in accordance with 
the dissipation function D, the scalar product a.8, i.e. 

D = o,pit = 1 a 1 - [ e 1 cm (a, e) = 2kk (i, 1 = r?, z, cp) (6.1) 
t+,ei, = I e 1 p; = 3”s (2a~ 5 8’ -I- 2); 2e, = yrr 

This yields 

The equation 
be written in the 

D = k. (~,a -f- ~,a + epa + $- ylla)“’ = ko I e I (6.2) 

~a~COS(O*e)=ko; k-a,--2k (2~8 f J3* + Z)+* 

of the rate of virtual work when the rate change is vanishingly small can 
form 

(6.3) 
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where B is the region of plastic deformation in the r,a plane with the boundary 8&P,, P, 
are the stress distribution densities on aQ. 

We assume in (6.31, for simplicity, that there are no volume forces in Q and, that the 

u* n velocity field is smooth. 
Below we shall introduce the statistically possible stresses Uff* and kinematically 

admissible deformation rates eljo /5-7, 12/, and denote by ulj,e,~ the real values of the 
stresses and deformation rates corresponding to relations (2.2) and satisfying the boundary 
conditions on &I = @QP IJ 8% (the stresses are specified on a$, anddeformation rates on 
as;fvf. From the maximum principle for the dissipation function we have 

(%* - uifl % G 0 (64 

Then from (6.3) and (6.4) we obtain 

1 (P,% 4 p,*q if.9 4 s (P@ -I- P,4 as (6.5) 
mpY 9 

which corresponds to the maximum power developed by the real surface forces as compared with 
any other statistically possible system Pr*, P,*. 

We will now derive the anafogue of the minimum of the real velocity field for a rigid- 
plastic medium (2.21, assuming that the real distribution of the stresses Off satisfies, at 
every point of the deformable body, the inequality (see the second equation of (6.211 

l%Id&(~ (6.6) 

where Ko = con& is found in terms of the physical strength parameters k,a,& 
Let us now turn to (6.21 and consider the scalar product 

~~~(s~~*-si~)~~~~~fs"~-SJsJ<ko(To~s"~-~s~), To=Ko/ko (6.7) 

Further, applying (6.3) to afl(ei~'- sli) and taking into account (6.71, we obtain 

The inequalities (6.5) and (6.8) yield a two-sided estimate fortbepower of the real 
surface forces for the given velocities. Moreover, using (6.8) we can place Eq.(6.3) in 1:l 
correspondence with the problem of determining the minimum ofthe functional 

J (u, u) = A4 (4 v) + L (u, y) (6.9) 
in the linear space 

where (%I", ur*), (ugo, up") are arbitrary, kinematically admissible pairs of displacement rate 
vectors of the points belonging to the volume Qwith the boundary afzy U m,. We obtain 
M (u, u), L(rc, v) in (6.9) thus: 

M(u,u)= koTof$+)1+($)% +(+-b++(+~]“‘~~ 

L (a, u) = f (P,Ic + P,v) & 
an 

(6.10) 

Following /13/, we establish that (6.10) is a convex non-differentiable functional, and 
some of the results of /13/ referring to the rigid-plastic body can be reformulated for (6.9). 
We note that when a+O, p#O, the U,U velocity field is not solenoidal with respect to 
(5.8), and it therefore makes not sense to change to the relation connecting the stress and 
deformation rate deviators. 

The hyperbolic second-order Eqs.(2,13) for the function @(?,I) ofcharacteristicdirections 
is reduced to a quasilinear first-order ststem /lO./. In this case the boundary conditions 
(3.3)-(3.4), (3.71, (3.10) can also be reformulated in terms of the functions of such a system. 
A solution oftheboundary-value problems for quasilinear hyperbolic systems, taking into 
account the possible discontinuities, can be constructed using the difference schemes of the 
type given in /14/ and similar ones. 

It should also be noted that the mechanical energy dissipation function per unit volume 
of D (6.2) can be exoressed linearlv in terms of the scalar function of characteristic 
directions @(r, e) (2: 10) thus: - 

D = 2krb-’ ; Q (r, z) / B I 

Then the problem of determining the minimum of the functional (6.9) can be formulated for 
(0. We must introduce here in a proper manner the linear space H,(Q), and this may prove a 
decisive factor in proving the existence of a minimizing element in the axisymmetric problem 
(6.9). 



120 

1. 

2. 

3. 

4 : 

5. 
6. 
7. 
8. 
9. 

10. 
11. 

12. 

13. 
14. 

SHIELD R.T., On the plastic flow of metals under 
sot. London. Ser. A., 233, 1193, 1955. 

conditions of axial symmetry. PTOC. Roy. 

I 

30X A.D., EASON C., HOPKINS H.G., Axially symmetric plastic deformations in soils. Phil. 
Trans. Roy. SOS. London, 254, 1, 1036, 1961. 

TRUCKER D.C., Limit analysis of two and three dimensional soil mechanics problems. J. Mech. 
PhYS. Solids, 1, 4, 1953. 

iAYTHORNTWAITE R.M., Range of yield condition in ideal plasticity Proc. Amer. Sot. Civil 
Engrs. J. Eng. Mech. Div., 127, 1, 1962. 

IILL R., The Mathematical Theory of Plasticity. Oxford, Clarendon Press, 1956. 
CVLEV D-D., Theory of Ideal Plasticity. Moscow, Nauka, 1966. 
MCHANOV L.M., Fundamentals of the Theory of Plasticity. Moscow, Nauka, 1969. 
rSYTOVICH N.A., Soil Mechanics, lrIoscow, Vyssh. Shakola, 1979. 
SHTEIN M.SH., A version of regularizing the equations of ideal plasticity in the case of 
axial symmetry. PMTF, 3, 1984. 

COUP&NT R., Partial Differential Equations. Moscow, Mir, 1964. 
DRUCKER D.C., PRAGER W. and GREENBERG H-I., Extended limit design theorems for continuous 
media. Quart, Appl. Math. 9, 4, 1952. 
FREUDENTBAL A. and GEIRINGER H., Mathematical Theory of an Inelastic Continuum. Moscow, 
Fizmatgiz, 1962. 

MOSOLOV P.P. and MYASNIKOV V.P., Mechanics of Rigid-Plastic Media, Moscow, Nauka, 1981. 
PETROV I.B. and KHOLODOV A.S., On regularizing discontinuous numerical solutions of 
hyperbolic-type equations. Zh. vychisl. Matematiki i mat. Fiziki, 24, 8, 1984. 

Translated by L.K. 

PMM U.S.S.R.,Vol.51,No.l,pp.120-124,1987 0021~8928/87 $lO.OG+O.OO 
Printed in Great Britain gl988 Pergamon Press plc 

A ~ENERALI~TION OF THE CANONICAL FORM OF POINCAR~~S EQUATIONS* 

L.M. MARKHASHOV 

A class of non-linear reversible replacements of canonical momenta is 
described, which reduces the Hamiltonian system to a form which differs 
only slightly from Poincar&'s equations /l/ in canonical form, obtained 
by Chetayev /2/. The difference is solely the fact that the components 
of the operators which form the right-hand side of the equations of motion 
may depend on new variables (the Chetayev variables). The usual canonical 
form of the equations is obtained if the resplacements of the momenta are 
linear and uniform. Among the important consequences of the equations are 
Liouville's theorem (on complete integrability), the Kozlov-Kolesnikov 
theorem (on integrability in integral manifolds) /3/, and the theorem on 
classes of equivalence of Hamiltonian systems. 

1. Initial data and relations. Consider s continuously differentiable functions 
of the coordinates and canonical momenta 

Pi = $i (Z, A), i = 1, . . ., 8 (1.Q 
which are functionally independent and uniquely solvable (in a certain region) in terms of 
the variables p, i.e., det(a*i/~Fj)~ 0, pj = qj (r, y) (the functions 'pj* naturally, are not defined 
everywhere), and generate an s-dimensional Lie algebra ((.,.) are Poisson brackets) 

using the operators 

($ig 9~) = Cijk$k i, j, k = 1, . , ., s (1.2) 

(1.3) 
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